Uppdatera hypothyreosbehandlingen – NU!

Det finns tre gamla myter om hypothyreosbehandling som är dags att avliva.

Den första myten hävdar att om TSH-värdet ligger inom referensområdet så är patienten eutyreoid dvs sköldkörtelhormonnivån är deinsamna som hos en "icke sköldkörtelsjuk" och anses därmed korrekt behandlad. Påståendet, att om hypofysens TSH-produktion faller inom referensområdet så när sköldkörtelhormonerna ut i alla vävander, måste förpassas till den tidigare sköldkörtelhistorien. Det som i stället gäller är att om vävnaderna har normal tillgång på sköldkörtelhormoner, så är det ett resultat av många olika processor som leder till konverteringen av T4 till det aktiva hormonet T3.

Den andra myten att om TSH-värdet hos behandlad patient ligger pressat eller under nedre referensvärdet så är patienten överbehandlad och hypertyreoid.

Den tredje myten att lågt/pressat TSH orsakar förväxlingar och osteoporos, benskörhet.
TSH-värdet är inte något mått på om sköldkörtelhormontillväxten i alla vänvänder i kroppen är tillräcklig. På cellnivå är det deiodinasenzymerna som reglerar detta genom att de aktivera eller inaktivera T₃ vilket får betydelse för vår hälsa, inte TSH som nu rådande dogm.²⁴

De skenberoende deiodinasenzymerna finns i tre former D₁, D₂ och D₃. D₂ finns framförallt i hjärnan, hypofyse, sköldkörteln, brun fettväv och hjärta. D₁ förekommer särskilt i levern och i njurarorna. D₃ är ett enzym som inaktiveraer T₄ till reverse T₃, rT₃.

T₄ transporteras över specifika och energikravande transportvägar i cellmembranet.¹ T₃ bildas genom att deiodinasenzymerna D₁ eller D₂ kopplar bort en jodatom från yttreningen i T₄. D₃ däremot bildar det inaktivaterande T₃ som benämns reverse T₃, rT₃, genom att en jodatom från inntreningen i T₄ kopplas bort. D₃ kan även kopplas bort från rT₃ varvid T₂ bildas, ett hormon som är särskilt aktivt i mitokondrierna och viktig för energibildningen.

D₁ sitter i plasmamembranet till lever- och njurcellerna. Denna placering gör att T₃ snabbt kommer ut till blodbanan. D₁ står för ungefär 80% av det i blodet cirkulerande T₃ medan 20% kommer direkt från sköldkörteln. Om hela sköldkörteln bortopereras eller slås ut av radioaktivt jod eller av inflation är det inte säkert att konverteringen av T₄-behandlingar ökar T₃ till den ursprungliga nivån som upprätthölls med den friska normala sköldkörteln. Detta är en av förklaringarna till varför många patienter inte blir återställda med bara T₄-substitution/Levaxin utan först med T₃-tillägget Liothyronin.

D₂ sitter i cellmembranet till det endoplasmatiska retiklet (ER) och till golgi apparaten. Placeringen gör att T₃ kommer närmare cellkärnan, verkar genomiskt och via dess starka antioxidativa effekt skyddar de nybildade proteiner mot den oxidativa stressen.⁵

TSH-värdet regleras av D2

Brist på T₃ i hjärtvävnaden leder till nedsatt kodning av muskelproteiner som bygger upp hjärtmuskelaturer. Bristen leder till hjärtsvikt som i sin tur orsakar förمكان-

Oxidativ stress

Likaväl som könshormonerna avtar i medelåldern, en minskning som för många är påtaglig och kännbar, så avtar även sköldkörtelproduktionen. D₁, enzymet som står för en stor del av andelen T₃ i blodet, minskar i aktivitet med åldern vilket gör att T₃ i perifer vävnad minskar, denna minskning avspeglas inte med stigande TSH. D₂-aktiviteten i hypofyseen tycks förbi relativt oförändrad vilket leder till fortsatt hög T₃-koncentration i hypofyseen och därmed ett relativt oförändrat TSH-värde. Samtidigt som T₃ minskar i perifer vävnad ökar D₃-aktiviteten vilket gynnar reverse T₃, rT₃, det inaktiverte T₃. Denna pool av rT₃ kan under åldrandet deiodineras vidare av D₃ till T₂.¹¹ T₂ är ett sköldkörtelhormonderivat som har specifik effekt i mitokondrierna och som utgör förutsättningen för ATP-produktionen och cellens tillgång till energi.¹²

Åldrandet sker i mitokondrierna. Med lägre T₃ minsk-

Levaxin, preparatet för hypotyreo-
behandling, kan orsaka hypotyreo-
pepsis på vävnadsnivå utan att TSH är inblandad.
Patientens anamnes måste tillmätras större betydelse än vad sker i dag när man bara följer sig på ett laboratorievärde.

kar mitokondrienybilden och mitokondriefunktionen avtar vilket leder till en kraftig ökning av de reaktiva syreradikaler, ROS, samtidigt som det antioxidanta system försvagas. Det är denna obalans, benämnt oxida-
tiv stress, som triggerar i gång det inflammatoriska systemet som leder till cellskador och celldöd. T3 har starka inflammationshämmande egenskaper.

Hypothyreos fångas inte alltid med blodprov. Man kan ha låg ämnesomsättning i olika vävnader i kroppen orsakat av defekt T4/T3 upptag i cellerna eller av nedsatt aktivitet i deoxidinserna D1 och D2 eller av okänt D3 som inaktiviserar T3 utan att det avslöjas med förhöjt TSH. Vidare kan man ha en genvariant för D2 Thr92/Ala som är så vanlig att den beräknas förekomma hos 25 – 30 % av befolkningen. Genvarianten har kopplats till övervikt, insulinresistens, typ 2 diabetes, nedsatt benäf-
het, osteoartrit och nedsatt välstånd. När D2 Thr92/Ala är vanlig, finns det makrosomia, fettuktag, insulinresistens, typ 2 diabetes, osteoartrit och nedsatt välstånd.

Genvarianten korrater halveringstiden för D2 och ökar den prokortisolens nedbrytning. Sköldkörtelhormonerna i blodet eller TSH-nivån påverkas inte men T3 på cellnivå blir lägre samtidigt som den oxidativa stressen ökar, en ökning som skadar proteinsynthesen och antas kunna förklara en del neurodegenerativa sjukdomar. Det förefal-
ter att denna genvariant endast har minimala eller ingen metabolisk omskrivning eftersom yngre friska individer men med okänd ålder och avtagande sköldkörtelfunktion får de konsekvenser. Denna D2 variant kan kompense-
ras med T3-behandling.

Om det lab. mässigt föreligger ett relativt högt T4, vilket ger lågt TSH, och ett lågt T3 i kombination med symtom på låg ämnesomsättning kan det tyda på defekt upptag av T4 och nedsatt konvertering till T3. Ett lab. värde med denna konstellation kan få doktorn att avfärda patienten som sköldkörtelsjuk, trots att patienten har låg metabolism på cellnivå.

Kombinationsbehandling har bättre positiva metabola effekter
TSH kan inte längre tilldelas status som The Golden Stan-
kvalitativt i alla dimensioner med det naturliga hormonet. Även om T4 via D2 hämmer TSH sekretionen så är det inte någon garanti för att det omvandlas till det naturliga och bioaktiva T3 i alla vävnader.

De molekylära förändringar som orsakas av Levoxin/T4-tillförsel förklarar varför många patienter inte blir fullt återställda med Levoxin utan först med T3-tillgången, Liothyronin. Enligt gamaluppfattning orsakar T3 benskörhet och förstärkningar och läkare har ibland "förbjudits" skriva ut preparatet till patienter. Som saxon redovisats är det snarare tvärtom. En studie som analyserade kombinationsbehandling Liothyronin och Levoxin under en behandlingsperiod på 17 år, jämfört med bara Levoxin, visade att T4/T3-behandlingen inte orsakade förstärkningar eller osteoporos.23

Kombinationsbehandling har bättre positiva metaboliska effekter än enbart Levoxin och bör övervägas till patienter som metabolt syndrom, hjärta-kärlsjukdom och övervikt. 24 Det finns många studier som talar för kombinationsbehandling antingen med de syntetiska eller med den mer biologiska behandlingen i form av Natural Desiccated Thyroid, ND, torkt svinsköldkörtelstrakt. 25,26,27,28,29

Räddan och motståndet mot tilläggsbehandling med T3 kan bero på okunskap om dess betydelse för vår hälsa. T3 är ett anabolt hormon som framförallt bildas på cellnivå av D2, förutsatt att det inte föreligger genvarianter som stör dess aktivitet, det har starka antioxidanta egenskaper och är ett nödvändigt hormon för mitokondriegenesens (nybildningen av mitokondrier) och ATP-produktionen.

Om man väljer Liothyronin som tillägg till Levoxinbehandling bör man starta med låga doser 5-10 mcg vilket kan ökas två gånger dagligen beroende på klinisk effekt. Liothyronin absorberas snabbt och har kort halver-
ingstid vilket gör det att det är svårt att få en jämn T3-nivå, omskurnom om en slow-release beredning har framförts av forskare. För en stor grupp Levoxinbehandlade hypothy-
reospatienter återställs TSH till referensvärdet men T3 sjunker vilket förklarar kvarstående hypothyreosymptom. Om patienten dessutom har den mycket vanliga genvarianten D2Thr92/Ala som orsakar hypothyreos på vä-
nadsnivå blir patienten inte återställd med bara Levoxin.
Hypotyreoosbehandlingen måste individualiseras.14,15
Om vi inte kan verifiera en misstänkt diagnos med blodprov eller annan undersökning tilldelas patientens namn ingen högre trovärdighet. Förutom att vi lever längre med sänkta hormonnivåer för flera hormonaxlar så översköljs vi av en mängd osynliga kemiska hormonstörande ämnen. Vi är dagligen utsatta för hormonstörande ämnen som påverkar sköldkörtelhormonerna på cellnivå utan att det avslöjas i vår traditionella blodprover.16 Nyare studier har påvisat att polybromerade diffylenyler, PBDE, ämnena vanliga i flämsklädsel, hårmålar D2 i hjärncellerna vilket leder till låga T3-koncentrationer med påverkan på kognitionen.17 Låga nivåer ger lägre ATP, den oxidativa stressten och dess följdverkan ökar. Det krävs bara små mängder av dessa hormonstörande molekyler för att vi ska påverkas skadligt. Många mediciner kan störa mitokondriinfunktionen, andra kan blockera sköldkörtelhormonreceptor, senast i raden av dessa projekterar det Voltaren.18 Blockeringen påverkar inte TSH-nivåen, återigen det som sker på cellnivå återspeglas inte i förhöjt TSH, en förbättring som läkaren kräver för att diagnosen hypothyreoos ska kunna gälla.

T3 som tillägg till Levoxin/T4 behandling ger positiva metabola effekter. Flera studier av våra folkhälsojukkomar borstar i bristande T3 och ATP- tillgång på cellnivå, en brist som gynnar det inflammatoriska tillståndet i vävnaderna och som slutligen ger vävnadsdagar och celldöd.

Allt fler hypothyreoosbehandlade patienter är hel- eller deltidjursjuka för att få en realistiskt trosuppfattning för att det finns bättre alternativ. Om det inte snart blir en ändring för diagnos och behandling, ett ansvar som faller på läkarna, kommer det stora ohalsotaket med svåra socio-ekonomiska konsekvenser att bättre.

HELENA ROOTH SVENSSON
Spec allmänmedicin
Förbättrar "Sköldkörteln och mitokondrierna"
lak@heroscare.se
www.heroscare.se

Referenser:
31. Zeeber R. Environmental chemicals impacting the thyroid: targets and consequences. Thyroid. 2007 Sep;17(9):811-817.